
Yogesh K. Gedam Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 3), July 2014, pp.197-202

 www.ijera.com 197 | P a g e

Fuzzy Keyword Search Over Encrypted Data in Cloud

Computing

Yogesh K. Gedam, Prof. Mrs. Varshapriya J.N.
M. Tech (Software Engineering) Veermata Jijabai Technological Institute Mumbai, India

Veermata Jijabai Technological Institute Mumbai, India

Abstract
As Cloud Computing becomes prevalent, more and more sensitive information are being centralized into the

cloud. For the protection of data privacy, sensitive data usually have to be encrypted before outsourcing, which

makes effective data utilization a very challenging task. Although traditional searchable encryption schemes

allow a user to securely search over encrypted data through keywords and selectively retrieve files of interest,

these techniques support only exact keyword search. This significant drawback makes existing techniques

unsuitable in cloud computing as it is greatly affect system usability, rendering user searching experiences very

frustrating and system efficiency very low. In this paper, for the first time we formalize and solve the problem of

effective fuzzy keyword search over encrypted cloud while maintaining keyword privacy. In our solution, we

exploit edit distance to quantify keyword similarity and develop new advanced technique on constructing fuzzy

keyword sets which greatly reduces the storage and representation overheads. In this way, we show that our

proposed solution is secure and privacy preserving, while realizing the goal of fuzzy keyword search.

Key Words: String Matching Algorithm, System Architecture

I. INTRODUCTION
As Cloud Computing becomes prevalent, more

and more sensitive information are being centralized

into the cloud such as emails, personal health records,

government documents, etc. By storing their data into

the cloud the data owners can be leaved from the

burden of data storage and maintenance so as to

enjoy the on demand high quality data storage

service. In Cloud Computing, data owners may share

their outsourced data with a large number of users.

The individual users might want to only retrieve

certain specific data files they are interested in during

a given session. One of the most popular ways is to

selectively retrieve files through keyword based

search instead of retrieving all the encrypted files

back which is completely impractical in cloud

computing scenarios. Such keyword based search

technique allows users to selectively retrieve files of

interest and has been widely applied in plaintext

search scenarios, such as Google search.

Unfortunately, data encryption restricts user’s ability

to perform keyword search and makes the traditional

plaintext search methods unsuitable for Cloud

Computing. Besides this, data encryption also

demands the protection of keyword privacy since

keywords usually contain important information

related to the data files. Although encryption of

keywords can secure keyword privacy, it further

renders the traditional plaintext search techniques

useless in this scenario.

To securely search over encrypted data,

searchable encryption techniques have been

developed in recent years. Searchable encryption

schemes usually build up an index for each keyword

of interest and associate the index with the files that

contain the keyword. By integrating the trapdoors of

keywords within the index information, effective

keyword search can be realized while both file

content and keyword privacy are well preserved.

Although allowing for performing searches securely

and effectively, the existing searchable encryption

techniques do not suit for cloud computing scenario

since they support only exact keyword search.

In this paper, we focus on enabling effective yet

privacy preserving fuzzy keyword search in Cloud

Computing. To the best of our knowledge, we

formalize for the first time the problem of effective

fuzzy keyword search over encrypted cloud data

while maintaining keyword privacy. Fuzzy keyword

search greatly enhances system usability by returning

the matching files when users’ searching inputs

exactly match the predefined keywords or the closest

possible matching files based on keyword similarity

semantics, when exact match fails. More specifically,

we use edit distance to quantify keywords similarity

and develop a novel technique, i.e. an wildcard based

technique, for the construction of fuzzy keyword sets.

This technique eliminates the need for enumerating

all the fuzzy keywords and the resulted size of the

fuzzy keyword sets is significantly reduced. Based on

the constructed fuzzy keyword sets, we propose an

efficient fuzzy keyword search scheme. Through

rigorous security analysis, we show that the proposed

RESEARCH ARTICLE OPEN ACCESS

Yogesh K. Gedam Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 3), July 2014, pp.197-202

 www.ijera.com 198 | P a g e

solution is secure and privacy preserving, while

correctly realizing the goal of fuzzy keyword search.

II. SERVICE ARCHITECTURE
We consider a high level architecture for cloud

data utilization services illustrated in Fig. 1. At its

core, the architecture consists of three entities: data

owner, user, and cloud server. Under the cloud

paradigm, the data owner may represent either an

individual or enterprise customer, who relies on the

cloud server for remote data storage and

maintenance, and thus is relieved from the burden of

building and maintaining local storage infrastructure.

Assume the data owner has a collection of n data files

C = (F1, F2, …, FN) to be stored in the cloud server,

where a predefined set of distinct keywords in C is

denoted as W = {w1, w2, ..., wp}.

Plaintext fuzzy keyword search:

The importance of fuzzy search has received

attention in the context of plaintext searching in

information retrieval community. They addressed this

problem in the traditional information access

paradigm by allowing user to search without using

try-and-see approach for finding relevant information

based on approximate string matching. At the first

glance, it seems possible for one to directly apply

these string matching algorithms to the context of

searchable encryption by computing the trapdoors on

a character base within an alphabet. However, this

trivial construction suffers from the dictionary and

statistics attacks and fails to achieve the search

privacy.

Searchable encryption:

Traditional searchable encryption has been

studied in the context of cryptography. Among those

works, most are focused on efficiency improvements

and security definition formalizations. The first

construction of searchable encryption was proposed

by Song et al, in which each word in the document is

encrypted independently under a special two-layered

encryption construction. Goh proposed to use Bloom

filters to construct the indexes for the data files. To

achieve more efficient search, Chang et al. and

Curtmola et al.both proposed similar “index”

approaches, where a single encrypted hash table

index is built for the entire file collection. In the

index table, each entry consists of the trapdoor of a

keyword and an encrypted set of file identifiers

whose corresponding data files contain the keyword.

As a complementary approach, Boneh et al. presented

a public-key based searchable encryption scheme,

with an analogous scenario to that of. Note that all

these existing schemes support only exact keyword

search, and thus are not suitable for Cloud

Computing.

Others:

Private matching , as another related notion, has

been studied mostly in the context of secure

multiparty computation to let different parties

compute some function of their own data

collaboratively without revealing their data to the

others. These functions could be intersection or

approximate private matching of two sets, etc. The

private information retrieval is an often-used

technique to retrieve the matching items secretly,

which has been widely applied in information

retrieval from database and usually incurs

unexpectedly computation complexity.

III. THREAT MODEL
We consider a semi-trusted server. Even though

data files are encrypted, the cloud server may try to

derive other sensitive information from users’ search

requests while performing keyword-based search

over C. Thus, the search should be conducted in a

secure manner that allows data files to be securely

retrieved while revealing as little information as

possible to the cloud server. In this paper, when

designing fuzzy keyword search scheme, we will

follow the security definition deployed in the

traditional searchable encryption. More specifically,

it is required that nothing should be leaked from the

remotely stored files and index beyond the outcome

and the pattern of search queries.

IV. DESIGN MODEL
In this paper, we address the problem of

supporting efficient yet privacy-preserving fuzzy

keyword search services over encrypted cloud data.

Specifically, we have the following goals: i) to

explore different mechanisms for constructing

storage-efficient fuzzy keyword sets; ii) to design

efficient and effective fuzzy search schemes based on

the constructed fuzzy keyword sets; iii) to validate

the security and evaluate the performance by

conducting extensive experiments.

V. PRELIMINARIES
Edit Distance:

There are several methods to quantitatively

measure the string similarity. In this paper, we resort

to the well-studied edit distance for our purpose. The

edit distance ed(w1, w2) between two words w1 and

w2 is the number of operations required to transform

Yogesh K. Gedam Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 3), July 2014, pp.197-202

 www.ijera.com 199 | P a g e

one of them into the other. The three primitive

operations are 1) Substitution: changing one

character to another in a word; 2) Deletion: deleting

one character from a word; 3) Insertion: inserting a

single character into a word. Given a keyword w, we

let Sw,d denote the set of words w_ satisfying

ed(w,w_) ≤ d for a certain integer d.

Fuzzy Keyword Search:

Using edit distance, the definition of fuzzy

keyword search can be formulated as follows: Given

a collection of n encrypted data files C = (F1, F2, . . .

, FN) stored in the cloud server, a set of distinct

keywords W = {w1, w2, ...,wp} with predefined edit

distance d, and a searching input (w, k) with edit

distance k (k ≤ d), the execution of fuzzy keyword

search returns a set of file IDs whose corresponding

data files possibly contain the word w, denoted as

FIDw: if w = wi ∈ W, then return FIDwi ; otherwise,

if w _∈ W, then return {FIDwi }, where ed(w,wi) ≤ k.

Note that the above definition is based on the

assumption that k ≤ d. In fact, d can be different for

distinct keywords and the system will return {FIDwi

} satisfying ed(w,wi) ≤ min{k, d} if exact match fails.

VI. FUZZY KEYWORD SEARCH

SCHEME
The architecture of our scheme is shown in

Figure 1. Fuzzy keyword search scheme is consist of

Data Owner, Data User, and Cloud Storage Provider.

Figure 1 The architecture of fuzzy keyword search

scheme based on “Dictionary-based Fuzzy Set

Construction”.

MODULES IN DATA OWNER

Definition 3.1 (Files): The set of files ready to

outsource is denoted as :

 FILE = {< 𝑓𝑖𝑑1, 𝑓𝑖𝑙𝑒1 >, <𝑓𝑖𝑑2, 𝑓𝑖𝑙𝑒2 >,......,<𝑓𝑖𝑑𝑛 ,

𝑓𝑖𝑙𝑒𝑛 >} 𝑓𝑖𝑙𝑒1 is the file body, 𝑓𝑖𝑑1 the identifier of

𝑓𝑖𝑑1.

Definition 3.2 (Text Extractor): file has a variety of

formats, such as doc, xls, and txt. Text Extractor is

used to extract the text part of file.

Input: FILE ;

Output:

TEXT = {< 𝑓𝑖𝑑1, 𝑡𝑒𝑥𝑡1 >, <𝑓𝑖𝑑2, 𝑡𝑒𝑥𝑡2 >,

>,......,<𝑓𝑖𝑑𝑚 , 𝑡𝑒𝑥𝑡𝑚 >}

Definition 3.3 (Text Filter): Except for the English

words in text , it also contains a lot of non-critical

information such as punctuation, separators, etc. Text

Filter is used to filter those non-critical information

and generate a list of words.

Input:TEXT ;

Output:

LIST=

{< 𝑓𝑖𝑑1, 𝐿𝐼𝑆𝑇1 >, <𝑓𝑖𝑑2, 𝐿𝐼𝑆𝑇2 >,......,<𝑓𝑖𝑑𝑛 ,

𝐿𝐼𝑆𝑇𝑛>}

𝐿𝐼𝑆𝑇𝑖 is the set of distinct words in 𝑡𝑒𝑥𝑡𝑖 .

Definition 4 (Index Builder): Based on the

Dictionary-based Fuzzy Keyword Set Construction,

we define the index builder as follows:

Input: LIST , a dictionary 𝐷1 , and the string edit

distance 𝑑1;

Output:

INDEX= < 𝐹𝑤𝑜𝑟𝑑 1𝑑1

𝐷1 , 𝐹𝐼𝐷𝑤𝑜𝑟𝑑 1
>

𝑤𝑜𝑟𝑑 1𝑐𝐿𝐼𝑆𝑇1ᶸ….ᶸ𝐿𝐼𝑆𝑇𝑛

𝐹𝐼𝐷𝑤𝑜𝑟𝑑 𝑖
 is the set of fids whose corresponding files

contain the word 𝑤𝑜𝑟𝑑𝑖 .

Definition 5 (Encryption): Let MasterKey be the data

owner’s secret key, MasterKey can generate

𝐾𝐹𝐼𝐿𝐸 = {𝑘𝑒𝑦1, 𝑘𝑒𝑦1, 𝑘𝑒𝑦1 } and 𝐾𝐼𝑁𝐷𝐸𝑋 ,

which are used to encrypt FILE and INDEX ,

respectively.

Input: FILE , INDEX , MasterKey

Key Generation:

𝐾𝐼𝑁𝐷𝐸𝑋 = 𝑓1 𝑀𝑎𝑠𝑡𝑒𝑟𝐾𝑒𝑦

𝑘𝑒𝑦𝑖 = 𝑓2 𝑀𝑎𝑠𝑡𝑒𝑟𝐾𝑒𝑦||𝑓𝑖𝑑𝑖 ,𝑘𝑒𝑦𝑖ɛ𝐾𝐹𝐼𝐿𝐸

Output:< 𝐼𝑁𝐷𝐸𝑋𝐸𝑛𝑐 , 𝐹𝐼𝐿𝐸𝐸𝑛𝑐 >, 𝐼𝑁𝐷𝐸𝑋𝐸𝑛𝑐 =

{< 𝑇𝐾𝐼𝑁𝐷𝐸𝑋
 𝑊

𝑊ɛ𝐹𝑤𝑜𝑟𝑑 1𝑑1
𝐷1 , 𝐸𝑛𝑐1 𝐾𝐼𝑁𝐷𝐸𝑋 , 𝐹𝐼𝐷𝑊 >

}𝑤𝑜𝑟𝑑𝐼ɛ𝐿𝐼𝑆𝑇1∪ 𝐿𝐼𝑆𝑇2…..∪𝐿𝐼𝑆𝑇3

𝐹𝐼𝐿𝐸𝐸𝑛𝑐 = {𝐸𝑛𝑐2(𝑘𝑒𝑦𝑖 , 𝑓𝑖𝑙𝑒𝑖)}𝑘𝑒𝑦 𝑖∈𝐾𝐹𝐼𝐿𝐸
, 𝑓𝑖𝑙𝑒𝑖 ∈

𝐹𝐼𝐿𝐸

𝑓1and 𝑓2 can be implemented by hash functions; 𝐸𝑛𝑐1

and 𝐸𝑛𝑐2can be implemented by blockcipher such as

AES and DES. T can be implemented by the one-way

function, which is similar as. We assume Data Owner

shares MasterKey with Data User.

Yogesh K. Gedam Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 3), July 2014, pp.197-202

 www.ijera.com 200 | P a g e

MODULES IN DATA USER

Definition 6 (Fuzzy): To search with keyword w ,

Data User need to generate the fuzzy keyword set of

w in string edit distance 𝑑2 . Input: keyword w , a

dictionary 𝐷2 , and the string edit distance 𝑑2 ;

Output:

FUZZY=𝐹𝑤1𝑑2

𝐷2 = {𝑓𝑢𝑧𝑧𝑦1 , 𝑓𝑢𝑧𝑧𝑦2 , … . , 𝑓𝑢𝑧𝑧𝑦𝑝}

Definition 7 (Trapdoor): The trapdoor function is

required to be the same with T in definition 3.5.

Input: FUZZY ;

Output:𝐹𝑈𝑍𝑍𝑌𝐸𝑛𝑐 = {𝑇𝐾𝐼𝑁𝐷𝐸𝑋
(𝑓𝑢𝑧𝑧𝑦𝑖)}𝑓𝑢𝑧𝑧𝑦 𝑖𝜖𝐹𝑈𝑍𝑍𝑌

Definition 3.8(Decryption):

Input:𝐹𝐼𝐿𝐸𝐸𝑛𝑐
′ ∁𝐹𝐼𝐿𝐸𝐸𝑛𝑐 ;

Output:

𝐹𝐼𝐿𝐸′∁𝐹𝐼𝐿𝐸, 𝐹𝐼𝐿𝐸′ =
{𝐷𝑒𝑐1 𝑘𝑒𝑦𝑖 , 𝑐𝑖𝑝ℎ𝑒𝑟𝑖) }𝑐𝑖𝑝ℎ𝑒𝑟 𝑖𝜖𝐹𝐼𝐿𝐸𝐸𝑛𝑐

′

VII. FUZZY KEYWORD SEARCH

PROCESS
Let’s begin with Data Owner. First, Data Owner

uses “Text Extractor”, “Text Filter” and “Index

Builder” to build an index for the entire files, then

he/she can generate 𝐾𝐹𝐼𝐿𝐸 and 𝐾𝐼𝑁𝐷𝐸𝑋 by MasterKey

to encrypt files and index respectively. Finally, Data

Owner outsources 𝐹𝐼𝐿𝐸𝐸𝑛𝑐 and 𝐼𝑁𝐷𝐸𝑋𝐸𝑛𝑐 to the

cloud storage provider. When searching with

keyword w , Data User generates the fuzzy keywords

of w and computes their trapdoors (𝐹𝑈𝑍𝑍𝑌𝐸𝑛𝑐) with

𝐾𝐼𝑁𝐷𝐸𝑋 . Then Data User sends 𝐹𝑈𝑍𝑍𝑌𝐸𝑛𝑐 as search

request to Cloud Storage Provider. Cloud Storage

Provider locates 𝐹𝑈𝑍𝑍𝑌𝐸𝑛𝑐 within 𝐼𝑁𝐷𝐸𝑋𝐸𝑛𝑐 , and

then returns all the matched encrypted fids as search

result. Afterward Data User uses INDEX K to decrypt

search result. If he/she wants to download some files

on the basis of the search result, he/she just sends the

corresponding encrypted fids to Cloud Storage

Provider, and then Cloud Storage Provider will

return the corresponding encrypted files. Finally,

Data User can use 𝐾𝐹𝐼𝐿𝐸 decrypt them.

PROPOSED SYSTEM:

 Main Modules:

1. Wildcard – Based Technique

2. Gram - Based Technique

3. Symbol – Based Trie – traverse Search Scheme

1.WILDCARD-BASED TECHNIQUE:

In the above straightforward approach, all the

variants of the keywords have to be listed even if an

operation is performed at the same position. Based on

the above observation, we proposed to use an

wildcard to denote edit operations at the same

position. The wildcard-based fuzzy set edits distance

to solve the problems.

For example, for the keyword CASTLE with the pre-

set edit distance 1, its wildcard based fuzzy keyword

set can be constructed as

SCASTLE, 1 = {CASTLE, *CASTLE,*ASTLE,

C*ASTLE, C*STLE, CASTL*E, CASTL*,

CASTLE*}.

Edit Distance:
a. Substitution

b. Deletion

c. Insertion

a) Substitution : changing one character to another

in a word;

b) Deletion : deleting one character from a word;

c) Insertion: inserting a single character into a word.

Algorithm 1 Wildcard-based Fuzzy Set Construction

1: procedure CreateWildcardFuzzySet(wi, d)

2: if d > 1 then

3: Call CreateWildcardFuzzySet(wi, d − 1);

4: end if

5: if d = 0 then

6: Set S′wi,d = {wi};

7: else

8: for (k ← 1 to |S′wi,d−1|) do

9: for j ← 1 to 2 * |S′wi,d−1[k]| + 1 do

10: if j is odd then

11: Set fuzzyword as S′wi,d−1[k];

12: Insert ⋆ at position [(j + 1)/2];

13: else

14: Set fuzzyword as S′wi,d−1[k];

15: Replace [j/2]-th character with ⋆;

16: end if

17: if fuzzyword is not in S′wi,d−1 then

18: Set S′wi,d = S′wi,d ∪ {fuzzyword};

19: end if

20: end for

21: end for

22: end if

23: end procedure

24: end procedure

2. GRAM-BASED TECHNIQUE:

Another efficient technique for constructing

fuzzy set is based on grams. The gram of a string is a

substring that can be used as a signature for efficient

approximate search. While gram has been widely

used for constructing inverted list for approximate

Yogesh K. Gedam Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 3), July 2014, pp.197-202

 www.ijera.com 201 | P a g e

string search, we use gram for the matching purpose.

We propose to utilize the fact that any primitive edit

operation will affect at most one specific character of

the keyword, leaving all the remaining characters

untouched. In other words, the relative order of the

remaining characters after the primitive operations is

always kept the same as it is before the operations.

For example, the gram-based fuzzy set SCASTLE, 1

for keyword CASTLE can be constructed as

{CASTLE, CSTLE, CATLE, CASLE, CASTE,

CASTL, ASTLE}.

Algorithm 2 Gram-based Fuzzy Set Construction

1: procedure CreateGramFuzzySet(wi, d)

2: if d > 1 then

3: Call CreateGramFuzzySet(wi, d − 1);

4: end if

5: if d = 0 then

6: S′wi,d = {wi};

7: else

8: for (k ← 1 to |S′wi,d−1|) do

9: for j ← 1 to 2 * |S′wi,d−1[k]| + 1 do

10: Set fuzzyword as S′wi,d−1[k];

11: Delete the j-th character;

12: if fuzzyword is not in S′wi,d−1 then

13: Set S′wi,d = S′wi,d ∪ {fuzzyword}

14: end if

15: end for

16: end for

17: end if

18: end procedure

19: end procedure

3. SYMBOL-BASED TRIE-TRAVERSE

SEARCH SCHME

To enhance the search efficiency, we now

propose a symbol-based trie-traverse search scheme,

where a multi-way tree is constructed for storing the

fuzzy keyword set over a finite symbol set. The key

idea behind this construction is that all trapdoors

sharing a common prefix may have common nodes.

The root is associated with an empty set and the

symbols in a trapdoor can be recovered in a search

from the root to the leaf that ends the trapdoor. All

fuzzy words in the trie can be found by a depth-first

search.

In this section, we consider a natural extension from

the previous single-user setting to multi-user setting,

where a data owner stores a file collection on the

cloud server and allows an arbitrary group of users to

search over his file collection.

Algorithm 3 SearchingTree

1: procedure SearchingTree({T′w})

2: for i ← 1 to |{T′w }| do

3: set currentnode as root of Gw;

4: for j ← 1 to l/n do

5: Set α as αj in the i-th T′w;

6: if no child of currentnode contains α then

7: break;

8: end if

9: Set currentnode as child containing α;

10: end for

11: if currentnode is leafnode then

12: Append currentnode.FIDs to

resultIDset;

13: if i = 1 then

14: return resultIDset;

15: end if

16: end if

17: end for

18: return resultIDset;

19: end procedure

20: end procedure

VIII. CONCLUSION
In this paper, for the first time we formalize and

solve the problem of supporting efficient yet privacy-

preserving fuzzy search for achieving effective

utilization of remotely stored encrypted data in Cloud

Computing. We design two advanced techniques

(i.e., wildcard-based and gram- based techniques) to

construct the storage-efficient fuzzy keyword sets by

exploiting two significant observations on the

similarity metric of edit distance. Based on the

constructed fuzzy keyword sets, we further propose a

brand new symbol-based trie-traverse searching

scheme, where a multi- way tree structure is built up

using symbols transformed from the resulted fuzzy

keyword sets. Through rigorous security analysis, we

show that our proposed solution is secure and

privacy- preserving, while correctly realizing the goal

of fuzzy keyword search. Extensive experimental

results demonstrate the efficiency of our solution.

Yogesh K. Gedam Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 7(Version 3), July 2014, pp.197-202

 www.ijera.com 202 | P a g e

As our ongoing work, we will continue to

research on security mechanisms that support 1)

search semantics that takes into consideration

conjunction of keywords, sequence of keywords, and

even the complex natural language semantics to

produce highly relevant search results. and 2) search

ranking that sorts the searching results according to

the relevance criteria.

REFERENCE

[1] D. Parkhill, “The challenge of the computer

utility,”Addison-Wesley Educational

Publishers Inc., US, 1966.

[2] P. Mell and T. Grance, “Draft nist working

definition of cloud computing,” Referenced

on June. 3rd, 2009 Online at

http://csrc.nist.gov/groups/SNS/cloud-

computing/index.html, 2009.

[3] M. Armbrust and et.al, “Above the clouds: A

berkeley view of cloud computing,” Tech.

Rep., Feb 2009. [Online]. Available:

http://www.eecs.berkeley.edu/Pubs/TechRpt

s/2009/EECS-2009-28.html

[4] Google, “Britney spears spelling

correction,” Referenced online at

http://www.google.com/jobs/ britney.html,

June 2009.

[5] M. Bellare, A. Boldyreva, and A. O’Neill,

“Deterministic and efficiently searchable

encryption,” in Proceedings of Crypto 2007,

volume 4622 of LNCS. Springer-Verlag,

2007.

[6] D. Song, D. Wagner, and A. Perrig,

“Practical techniques for searches on

encrypted data,” in Proc. of IEEE

Symposium on Security and Privacy’00,

2000.

[7] E.-J. Goh, “Secure indexes,” Cryptology

ePrint Archive, Report 2003/216, 2003,

http://eprint.iacr. org/.

[8] D. Boneh, G. D. Crescenzo, R. Ostrovsky,

and G. Persiano, “Public key encryption with

keyword search,” in Proc. of

EUROCRYP’04, 2004.

[9] B. Waters, D. Balfanz, G. Durfee, and D.

Smetters, “Building an encrypted and

searchable audit log,” in Proc. of 11th

Annual Network and Distributed System,

2004.

[10] Y.-C. Chang and M. Mitzenmacher,

“Privacy preserving keyword searches on

remote encrypted data,” in Proc. of

ACNS’05, 2005.

[11] R. Curtmola, J. A. Garay, S. Kamara, and R.

Ostrovsky, “Searchable symmetric

encryption: improved definitions and

efficient constructions,” in Proc. of ACM

CCS’06, 2006.

[12] D. Boneh and B. Waters, “Conjunctive,

subset, and range queries on encrypted

data,” in Proc. of TCC’07, 2007, pp. 535–

554.

[13] F. Bao, R. Deng, X. Ding, and Y. Yang,

“Private query on encrypted data in multi-

user settings,” in Proc. of ISPEC’08, 2008.

[14] X. Yang, B. Wang, and C. Li, “Cost-based

variable-length-gram selection for string

collections to support approximate queries

efficiently,” in Proc. of ACM SIGMOD’08,

2008.

[15] C. Li, J. Lu, and Y. Lu, “Efficient merging

and filtering algorithms for approximate

string searches,” in Proc. of ICDE’08, 2008.

